■ 多項式的四則運算

【範例】:王老先生打算在河岸邊用 40 公尺長的鐵絲圍成一個矩形菜圃(河岸邊不圍),

請問:這塊菜圃的面積為多少平方公尺?

解 : 設寬為x公尺,則長為(40-2x)公尺。

菜圃面積= $x(40-2x)=40x-2x^2$ (平方公尺)。

答:當寬為x公尺時,菜圃面積為 $40x-2x^2$ (平方公尺)。

在上面的範例中, $(40x-2x^2)$ 是我們這一節所要學的多項式。

現在讓我們先來認識一下多項式。

(1) 多項式的定義:

1. 多項式:

像 x^2+2x+2 這類由數和文字符號x 進行加法和乘法運算所構成的式子,稱為x的多項式。

2. 一元一次式:

當一個式子只含有一個未知數 $(-\pi)$,而此未知數的次方是一次, 我們稱為一元一次多項式,例如:-3x-5,y+3。

3. 一元二次式:

當一個式子只含有一個未知數,而此未知數的最高次數為 2 時, 我們稱為一元二次多項式,例如: $f(x)=x^2+3x+2$ 為一元二次多項式。

4. 一元三次式:

當一個式子只含有一個未知數,而此未知數的最高次數為3時,

我們稱為一元三次多項式,例如: $f(x)=2x^3-3x^2+x+2$ 為一元三次多項式。

5. 項:

多項式中,被加、減號分開的每一部份,包括其前面的符號叫做項。

例如:多項式 $5x^2 + 2x - 1$ 寫成 $5x^2 + 2x + (-1)$ 有三個項 $5x^2 \cdot 2x \cdot (-1)$ 。

6. 常數項:

多項式中的項,如果只是一個數,而不含任何其他文字符號x,叫做常數項。

7. 次數:

- a. 含一個文字的多項式;此文字的最高指數叫做此多項式的次數(次方)。
- b. 含多文字的多項式;各項中,諸文字次數之最高者叫做這多項式的次數(次方)。例如: x^2+2x+2 文字x的最高次數是 2,則此多項式為二次多項式簡稱二次式。

8. 升幂排列或升次排列:

把多項式的各項按x的次數由小到大排列,如果有常數項時,把它放在最前面。 例如: $-2x-3x^2+4$ 的升幂排列是 $4-2x-3x^2$ 。

9. 降幂排列或降次排列:

把多項式的各項按x的次數由大到小排列,如果有常數項時,把它放在最後面。 例如: $-2x-3x^2+4$ 的升幂排列是 $-3x^2-2x+4$ 。

10. 同類項:

在多項式中, x 的次數相同的項,稱為同類項;常數項也是同類項。

例如: $3x^2-2x+4$ 與 $5x^2+2x-1$,3和5是 x^2 的同類項係數,-2和2是x的 同類項係數,4和-1是常數項係數。

(2) 多項式的加、減運算:

有關多項式的加減運算,基本上就是將同類項的係數對應相加或相減,所以需要將 同類項對齊,再將係數相加或相減。通常我們會將符號或係數分開,只寫出係數作 運算,這樣計算上比較簡單。

1. 在用橫式做多項式的加法、減法運算時,事實上就是將同類項的係數相加或相減。

【範例】: 請化簡 $(-x+2x^2+2)+(1+2x+3x^2)$ 。

解:
$$(-x+2x^2+2)+(1+2x+3x^2)$$

= $(2x^2-x+2)+(3x^2+2x+1)$
= $(2+3)x^2+(-1+2)x+(2+1)$
= $5x^2+x+3$

2. 在用直式做多項式的加法、減法運算時,須將同類項對齊,再將係數相加或相減。

【範例】: 請化簡 $(2x^2-x+2)+(3x^2+2x+1)$ 。

解:
$$2x^2 - x + 2$$

 $+ 3x^2 + 2x + 1$
 $5x^2 + x + 3$

3. 分離係數法是將直式中各項的係數與文字符號分離開,只寫出係數作運算的一種方法。在寫出係數時,遇到缺項,通常都補 0。

【範例】: 請化簡 $(5x^2-2x+1)+(2x^2+4x+3)$ 。

解:
$$x^2$$
 x^1 x^0 5 -2 1 $+$ 2 4 3 $-$ 7 2 4

所以 $(5x^2-2x+1)+(2x^2+4x+3)=7x^2+2x+4$

【範例】: 請化簡 $(7x^2+3x+1)-(4x^2-2x+5)$ 。

解:
$$x^2$$
 x^1 x^0 7 3 1 $\frac{-)4}{3}$ $\frac{-2}{5}$ $\frac{5}{-4}$

所以
$$(7x^2+3x+1)-(4x^2-2x+5)=3x^2+5x-4$$

【範例】: 請化簡 $(5x^2+2)-(x^2-3x-7)$ 。

解:
$$x^2$$
 x^1 x^0 5 0 2 $\frac{-1}{4}$ $\frac{1}{3}$ $\frac{-7}{9}$

所以
$$(5x^2+2)-(x^2-3x-7)=4x^2+3x+9$$

【範例】: 請化簡 $(1+x+3x^2)-(7x^2+5)$ 。

解:
$$x^2$$
 x^1 x^0 3 1 1 1 $-$ 7 0 5 $-$ 4 1 $-$ 4

所以
$$(1+x+3x^2)-(7x^2+5)=-4x^2+x-4$$

(3) 多項式的乘法:

我們會採升幂或降幂排列,兩多項式相乘我們會使用下列規則:

 $1. \underline{交換律}: a \times b = b \times a$

2. <u>結合律</u>: $a \times b \times c = a \times (b \times c) = (a \times b) \times c$

3. 分配律: $a \times (b + c) = a \times b + a \times c$

$$(a+b) \times c = a \times c + b \times c$$

 $(a + b) \times (c + d) = (a + b) \times c + (a + b) \times d = a \times c + b \times c + a \times d + b \times d$

 $a \times (b + c + d) = a \times b + a \times c + a \times d$

 $(a+b)\times(c+d+e) = a\times c + a\times d + a\times e + b\times c + b\times d + b\times e$

通常我們也會將符號或係數分開,只寫出係數作運算,這樣計算上比較簡單。

【範例】: 利用乘法運算展開下列各式:

(1)
$$-x(2x+5)$$
 (2) $x(2x^2-x+3)$ (3) $(3x^2-2x+1)\times 2x$

解: (1)
$$-x(2x+5)=(-x)\times 2x+(-x)\times 5$$

= $-2x^2-5x$

(2)
$$x(2x^2 - x + 3) = x \times (2x^2) - x \times (x) + x \times 3$$

= $2x^3 - x^2 + 3x$

(3)
$$(3x^2 - 2x + 1) \times 2x = 3x^2 \times 2x - 2x \times 2x + 1 \times 2x$$

= $6x^3 - 4x^2 + 2x$

【範例】: 利用乘法運算展開下列各式:

(1)
$$(x+3)(x+2)$$
 (2) $(x-2)(x+3)$ •

解: (1)
$$(x+3)(x+2) = x(x+2) + 3(x+2)$$

= $x^2 + 2x + 3x + 6$
= $x^2 + 5x + 6$

(2)
$$(x-2)(x+3) = x(x+3)-2(x+3)$$

= $x^2 + 3x - 2x - 6$
= $x^2 + x + 6$

也可以用直式乘法作答,如下圖所示:

(1)
$$x \to 3$$
 $x \to 2$ $x \to 2$ $x \to -6$ $x \to -2$ $x \to -2$ $x \to -6$ $x \to -2$ $x \to -6$ $x \to -6$

也可以用分離係數法作答,如下圖所示:

【範例】: 利用乘法運算展開下列各式:

(1)
$$(2x-3)(3x-5)$$
 (2) $(x+6)(3x-4)$

解: (1)
$$(2x-3)(3x-5)=2x(3x-5)-3(3x-5)$$

= $6x^2-10x-9x+15$
= $6x^2-19x+15$

(2)
$$(x+6)(3x-4) = x(3x-4)+6(3x-4)$$

= $3x^2-4x+18x-24$
= $3x^2+14x-24$

也可以用直式乘法作答,如下圖所示:

也可以用分離係數法作答,如下圖所示:

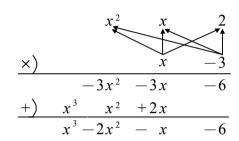
【範例】: 利用乘法運算展開 $(x+1)\times(3x+7)\times(2x-4)$ 。

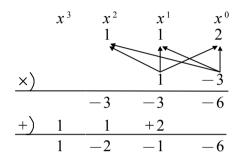
解:
$$(x+1)\times(3x+7)\times(2x-4)$$

= $[x(3x+7)+(3x+7)]\times(2x-4)$
= $[3x^2+7x+3x+7]\times(2x-4)$
= $(3x^2+10x+7)\times(2x-4)$
= $2x(3x^2+10x+7)-4(3x^2+10x+7)$
= $6x^3+20x^2+14x-12x^2-40x-28$
= $6x^3+8x^2-26x-28$

【範例】: 利用乘法運算展開 $(2x+1)\times(x^2-2x+1)$ 。

$$\mathbf{R}$$: $(2x+1)\times(x^2-2x+1)$


$$= x^{2} (2x+1)-2x (2x+1)+(2x+1)$$


$$= 2x^3 + x^2 - 4x^2 - 2x + 2x + 1$$

$$= 2x^3 + (1-4)x^2 + (-2+2)x + 1$$

$$= 2x^3 - 3x^2 + 1$$

也可以用直式乘法或分離係數法作答,如下圖所示:

【範例】: 利用乘法運算展開 $(2x+1)\times(x^2-2x+1)$ 。

$$\mathbf{F}$$: $(2x+1)\times(x^2-2x+1)$


$$= x^{2} (2x+1)-2x (2x+1)+(2x+1)$$

$$= 2x^3 + x^2 - 4x^2 - 2x + 2x + 1$$

$$= 2x^3 + (1-4)x^2 + (-2+2)x + 1$$

$$= 2x^3 - 3x^2 + 1$$

也可以用直式乘法或分離係數法作答,如下圖所示:

(4) 多項式的除法:

在小學時,我們會以下面的長除法(直式計算法)來求出58除以13得到商數4,

餘數 6:

$$\begin{array}{r}
 4 \\
 \hline
 13) 58 \\
 \hline
 52 \\
 \hline
 6
\end{array}$$

同時,我們也知道:58=13×4+6。

事實上,在自然數的除法中,我們有下列的規則:

被除數=除數 × 商數+餘數,

其中, 商數和餘數為非負整數, 且餘數小於除數。

同樣的,在多項式的除法中,我們也有類似的規則:

被除式=除式 × 商式+餘式,

其中,商式的次數等於被除式的次數減去除式的次數,且餘式的次數要小於除式的次數。

類似於自然數的除法,多項式的除法運算也有直式計算法(長除法)。為了簡化計算,也常使用分離係數法。這兩種方法的差別在於計算過程中,有沒有將文字符號寫出來而已。

【範例】: $\bar{x}(x^2+x+1)$: \bar{x} 的商式及餘式。

解 :方法一:直式計算法

 $\begin{array}{c}
x + 1 \\
x \overline{\smash) x^2 + x + 1} \\
\underline{x^2} \\
x + 1 \\
\underline{x}
\end{array}$

方法二:分離係數法

$$\begin{array}{c|c}
1+1 \\
1) 1+1+1 \\
\underline{1} \\
1+1 \\
1
\end{array}$$

商式為(x+1),餘式為1。

$$\therefore (x^2+x+1) \div x = (x+1) \cdot \cdot \cdot \cdot 1,$$

$$(x^2 + x + 1) = x \cdot (x + 1) + 1 \circ$$

【範例】: $\bar{x}(2x^4+0x^3-4x^2+0x+2)$ ÷ (x^2+0x-1) 的商式及餘式。

解 :步驟 a. 將原式改變成降冪排列,且缺項部分補零:

$$(2x^4+0x^3-4x^2+0x+2)$$
÷ (x^2+0x-1)

$$x^{2} + 0x - 1$$

$$2x^{2}$$

$$2x^{4} + 0x^{3} - 4x^{2} + 0x + 2$$

$$2x^{4} + 0x^{3} - 2x^{2}$$

$$-2x^{2}$$

步驟 c.
$$x^{2} + 0x - 1) 2x^{4} + 0x^{3} - 4x^{2} + 0x + 2$$

$$2x^{4} + 0x^{3} - 4x^{2} + 0x + 2$$

$$2x^{4} + 0x^{3} - 2x^{2}$$

$$-2x^{2} + 0x + 2$$

$$-2x^{2} + 0x + 2$$

$$0$$
故可知 $(-4x^{2} + 2 + 2x^{4}) \div (-1 + x^{2}) = 2x^{2} - 2$ 。

【範例】: $\dot{x}(6x^4+7x^3-x^2-5x-2) \div (2x^3+x^2-x-1)$ 的商式及餘式。

故可知
$$(6x^4 + 7x^3 - x^2 - 5x - 2)$$
 ÷ $(2x^3 + x^2 - x - 1)$ 的商式為 $3x + 2$,餘式為 0 。

【範例】: $求(x^2 + 4x + 2) \div (x + 1)$ 的商式及餘式。

解

$$\begin{array}{c}
x + 3 \\
x + 1 \overline{\smash) \begin{array}{c} x^2 + 4x + 2 \\
x^2 + x \end{array}} \\
\underline{\begin{array}{c} 3x + 2 \\
3x + 3 \\
-1 \end{array}} \\
-1
\end{array}$$

商式為x+3,餘式為-1。

※注意:在完成多項式的除法後,為了驗證所得結果是否正確,除了重新檢視運算 過程外,也常用上述的概念來驗算。例如:

$$(x+1)(x+3)+(-1)$$
 (除式×商式+餘式)
= $x^2+4x+3-1$
= x^2+4x+2 (被除式)

【範例】: $求(2x^3 + 5x^2 + x + 5) \div (x + 2)$ 的商式及餘式。

:方法一:直式計算法

方法二:分離係數法

$$\begin{array}{r}
2+1-1 \\
1+2 \overline{\smash{\big)}\,2+5+1+5} \\
2+4 \\
1+1 \\
1+2 \\
-1+5 \\
-1-2 \\
7
\end{array}$$

商式為 $2x^2+x-1$,餘式為 7。

【範例】: $\bar{x}(3x^2+2)\div(2x-1)$ 的商式及餘式。

: 因為 $(3x^2+2) = 3x^2+0\cdot x+2$,所以用 3+0+2 來表示 $3x^2+2$ 。

$$\begin{array}{r}
\frac{\frac{3}{2} + \frac{3}{4}}{2} \\
2 - 1 \overline{\smash{\big)}\,3 + 0 + 2} \\
3 - \frac{3}{2} \\
\hline
\frac{\frac{3}{2} + 2}{\frac{3}{2} - \frac{3}{4}} \\
\hline
2 \frac{\frac{3}{4}}{4}
\end{array}$$

商式為 $\frac{3}{2}x + \frac{3}{4}$,餘式為 $-2\frac{3}{4}$ 。

【範例】: $\bar{x}(x^3+2x^2-3x+2)\div(x^2+x+1)$ 的商式及餘式。

:方法一:直式計算法

所以 (x^3+2x^2-3x+2) ÷ (x^2+x+1) 的商式是(x+1),餘式是(-5x+1)。

小 試 身 手

【例題一】

寫出下列各式的最高次數,及其係數:

$$(1)5x^2 - 3x + 2$$
 $(2)3x^2 - 7$ \circ $(1) -7x^2 - x + 6$ $(2)6x^2 - 15$ \circ

$$(2)3x^2-7$$

【練習一】

寫出下列各式的最高次數,及其係數:

$$(1) -7x^2 - x + 6$$

$$(2)6x^2-15$$

【例題二】

以横式化簡:

$$(2x^2-3x+4)+(x^2+5x-2)$$
 •

【練習二】

以横式化簡:

$$(4x^2-7x+10)+(2x^2-5)$$
 •

【例題三】

利用直式及分離係數法:

化簡:
$$(x^3-2x^2+6)-(7x^2+3)$$
。

【練習三】

利用直式及分離係數法:

化簡:
$$(x^3-2x^2+6)+(7x^2+3)$$
。

【例題四】

設 $f(x) = 2x^3 + 3x^2 - 4x + 5$, $g(x) = x^4 - 3x^3 + 2x^2 + x - 3$,試求 f(x) - g(x)。

【練習四】

設 $f(x) = 4x^3 - 3x^2 - 6x + 10$, $g(x) = 2x^4 - 7x^3 + 12x^2 + 5x - 13$,試求 f(x) + g(x)。

【例題五】

展開下列各式:

- $(1)(2x-5)(x^2-3x+2)$
- $(2)(3x+1)(x^2+4x-1)$ \circ

【練習五】

展開下列各式:

- $(1)(x^2-1)(2x^2-5x+3)$ \circ
- $(2)(2x^2-3)(x^3+2x^2-x+1)$ \circ

【例題六】

【練習六】

 $\bar{x}(x^2+4x+4)\div(x+1)$ 的商式及餘式。 $\bar{x}(3x^2+5x+7)\div(2x+1)$ 的商式及餘式。

【例題七】

設
$$A$$
為多項式,且知 $\dfrac{x^2+3x+3}{A}=(x+2)+\dfrac{1}{A}$,求 A 。

【練習七】

設
$$A$$
為多項式,且知 $\frac{2x^3-4}{A}=(x^2+x+1)-\frac{2}{A}$,求 A 。

【例題八】

【練習八】

若 $4x^3 + 8x^2 + ax + 3$ 能被 $2x^2 + x + b$ 整除,試求 a 和 b 之值。

【例題九】

$$\div (2x^2 + x - 4) - B = 8x^2 - 2x + 2$$
 , 求 B 的值。

【練習九】